CS 6402
DESIGN AND ANALYSIS OF
ALGORITHMS

QUESTION BANK

UNITI INTRODUCTION

Fundamentals of algorithmic problem solving — Important problem types — Fundamentals of the analysis
of algorithm efficiency — analysis frame work —Asymptotic notations — Mathematical analysis for
recursive and non-recursive algorithms.

2 marks

1. Why is the need of studying algorithms?

From a practical standpoint, a standard set of algorithms from different areas of computing must be known,
in addition to be able to design them and analyze their efficiencies. From a theoretical standpoint the study
of algorithms is the cornerstone of computer science.

2. What is algorithmic?

The study of algorithms is called algorithmic. It is more than a branch of computer science. It is the core of
computer science and is said to be relevant to most of science, business and technology.

3. What is an algorithm?

An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required
output for any legitimate input in finite amount of time.

An algorithm is step by step procedure to solve a problem.

4. Give the diagram representation of Notion of algorithm.

Problem

.'-u
Algorithm

Y
Input —® “Computer” [Output

S. What is the formula used in Euclid’s algorithm for finding the greatest common divisor of two
numbers?
Euclid’s algorithm is based on repeatedly applying the equality
Gced(m,n)=gcd(n,m mod n) until m mod n is equal to 0, since ged(m,0)=m.

6. What are the three different algorithms used to find the gcd of two numbers?
The three algorithms used to find the ged of two numbers are

e Euclid’s algorithm

e Consecutive integer checking algorithm

e Middle school procedure
7. What are the fundamental steps involved in algorithmic problem solving?
The fundamental steps are

e Understanding the problem
e Ascertain the capabilities of computational device

Choose between exact and approximate problem solving
Decide on appropriate data structures
Algorithm design techniques
Methods for specifying the algorithm
Proving an algorithms correctness
Analyzing an algorithm
e Coding an algorithm
8. What is an algorithm design technique?
An algorithm design technique is a general approach to solving problems algorithmically that is applicable
to a variety of problems from different areas of computing.
9. What is pseudocode?
A pseudocode is a mixture of a natural language and programming language constructs to specify an
algorithm. A pseudocode is more precisethan a natural language and its usage often yields more concise
algorithm descriptions.
10. What are the types of algorithm efficiencies?
The two types of algorithm efficiencies are
o Time efficiency: indicates how fast the algorithm runs
e Space efficiency: indicates how much extra memory the algorithm needs
11. Mention some of the important problem types?
Some of the important problem types are as follows
Sorting
Searching
String processing
Graph problems
Combinatorial problems
Geometric problems
Numerical problems
12. What are the classical geometric problems?
The two classic geometric problems are
e The closest pair problem: given n points in a plane find the closest pair among them
e The convex hull problem: find the smallest convex polygon that would include all the points of a
given set.
13. What are the steps involved in the analysis framework?
The various steps are as follows
e Measuring the input’s size
e Units for measuring running time
e Orders of growth
e Worst case, best case and average case efficiencies
14. What is the basic operation of an algorithm and how is it identified?
e The most important operation of the algorithm is called the basic operation of the algorithm, the
operation that contributes the most to the total running time.
e It can be identified easily because it is usually the most time consuming operation in the algorithms
innermost loop.
15. What is the running time of a program implementing the algorithm?
The running time T(n) is given by the following formula
T(n) =copC(n)

cop is the time of execution of an algorithm’s basic operation on a particular computer and
C(n) is the number of times this operation needs to be executed for the particular algorithm.
16. What are exponential growth functions?
The functions 2n and n! are exponential growth functions, because these two functions grow so fast that
their values become astronomically large even for rather smaller values of n.
17. What is worst-case efficiency?
The worst-case efficiency of an algorithm is its efficiency for the worst-case input of size n, which is an
input or inputs of size n for which the algorithm runs the longest among all possible inputs of that size.
18. What is best-case efficiency?
The best-case efficiency of an algorithm is its efficiency for the best-case input of size n, which is an input
or inputs for which the algorithm runs the fastest among all possible inputs of that size.
19. What is average case efficiency?
The average case efficiency of an algorithm is its efficiency for an average case input of size n. It provides
information about an algorithm behavior on a “typical” or “random” input.
20. What is amortized efficiency?
In some situations a single operation can be expensive, but the total time for the entire sequence of n such
operations is always significantly better that the worst case efficiency of that single operation multiplied by
n. this is called amortized efficiency.
21. Define O-notation?
A function t(n) is said to be in O(g(n)), denoted by t(n) € O(g(n)), if t(n) is bounded above by some constant
multiple of g(n) for all large n, i.e., if there exists some positive constant ¢ and some non-negative integer ng
such that

T (n) <=cg (n) for all n >=n,
22. Define Q-notation?
A function t(n) is said to be in Q (g(n)), denoted by t(n) € Q (g(n)), if t(n) is bounded below by some
constant multiple of g(n) for all large n, i.e., if there exists some positive constant ¢ and some non-negative

integer ny such that

T (n) >=cg (n) for all n >=n,
23. Define 0-notation?
A function t(n) is said to be in 0 (g(n)), denoted by t(n) € 0 (g(n)), if t(n) is bounded both above & below by
some constant multiple of g(n) for all large n, i.e., if there exists some positive constants ¢l & ¢2 and some
nonnegative integer n0 such that
crg (n) <=t (n) <= ¢;g (n) for all n >=n0
24. Mention the useful property, which can be applied to the asymptotic notations and its use?
If t;(n) € O(gi(n)) and to(n) € O(gx(n)) then t;(n)+t(n) € max {g;(n),g,(n)} this property is also true for Q
and 0 notations. This property will be useful in analyzing algorithms that comprise of two consecutive
executable parts.
25. What are the basic asymptotic efficiency classes?
The various basic efficiency classes are
Constant : 1
Logarithmic : log n
Linear : n
N-log-n : nlog n
Quadratic : n2
Cubic : n3
Exponential : 2n
Factorial : n!

26. What is algorithm visualization?
Algorithm visualization is a way to study algorithms. It is defined as the use of images to convey some
useful information about algorithms. That information can be a visual illustration of algorithm’s operation,
of its performance on different kinds of inputs, or of its execution speed versus that of other
algorithms for the same problem.
27. What are the two variations of algorithm visualization?

e The two principal variations of algorithm visualization™ . _Static algorithm visualization: It shows the

algorithm’s progress
e through a series of still images . Dynamic algorithm visualization: Algorithm animation shows a
e continuous movie like presentation of algorithms operations

28. What is order of growth?
Measuring the performance of an algorithm based on the input size n is called order of growth.

16 marks

1. Explain about algorithm with suitable example (Notion of algorithm).
An algorithm is a sequence of unambiguous instructions for solving a computational problem,
i.e., for obtaining a required output for any legitimate input in a finite amount of time.

problem

algorithm

Algorithms — Computing the Greatest Common Divisor of Two Integers(gcd(m, n): the
largest integer that divides both m and n.)
v Euclid’s algorithm: gcd(m, n) = ged(n, m mod n)
Stepl: If n = 0, return the value of m as the answer and stop; otherwise, proceed to Step 2.
Step2: Divide m by n and assign the value of the remainder to r.
Step 3: Assign the value of n to m and the value of r to n. Go to Step 1.
Algorithm Euclid(m, n)
//Computes gcd(m, n) by Euclid’s algorithm
//Input: Two nonnegative, not-both-zero integers m and n
//Output: Greatest common divisor of m and n
while n # 0 do
r < mmodn
m<€n
n<r
return m

About This algorithm
Finiteness: how do we know that Euclid’s algorithm actually comes to a stop?

Definiteness: nonambiguity
Effectiveness: effectively computable.

v Consecutive Integer Algorithm
Stepl: Assign the value of min{m, n} to t.

Step2: Divide m by t. If the remainder of this division is 0, go to Step3;otherwise, go to Step
4,
Step3: Divide n by t. If the remainder of this division is 0, return the value of t as the answer
and stop; otherwise, proceed to Step4.
Step4: Decrease the value of t by 1. Go to Step2.
About This algorithm

* Finiteness

* Definiteness

= Effectiveness

v' Middle-school procedure

Step1: Find the prime factors of m.
Step2: Find the prime factors of n.
Step3: Identify all the common factors in the two prime expansions found in Stepl and Step2.
(If p is a common factor occurring Pm and Pn times in m and n, respectively, it should be
repeated in min{Pm, Pn} times.)
Step4: Compute the product of all the common factors and return it as the ged of the numbers
given.

2. Write short note on Fundamentals of Algorithmic Problem Solving
v" Understanding the problem
= Asking questions, do a few examples by hand, think about special cases, etc.
v" Deciding on
= Exact vs. approximate problem solving
* Appropriate data structure
v" Design an algorithm
v' Proving correctness
v" Analyzing an algorithm

Understand the prablem

\

Decide on:
computational means,
exact vs. approximate solving,
data structure(s),
algorithm design technigue

A

Design an algorithm

Y

Prove correctness

3

Analyze the algorithm

Y
Code the algorithm

* Time efficiency : how fast the algorithm runs
* Space efficiency: how much extra memory the algorithm needs.
v" Coding an algorithm
3. Discuss important problem types that you face during Algorithm Analysis.
v’ sorting
= Rearrange the items of a given list in ascending order.
* Input: A sequence of n numbers <al, a2, ..., an>
* Qutput: A reordering <a’l, a’2, ..., a'n> of the input sequence such that a’1<a"2
<...<a'n.
A specially chosen piece of information used to guide sorting. l.e., sort student
records by names.
Examples of sorting algorithms
Selection sort
Bubble sort
Insertion sort
Merge sort
Heap sort ...

Evaluate sorting algorithm complexity: the number of key comparisons.
Two properties
Stability: A sorting algorithm is called stable if it preserves the relative order of
any two equal elements in its input.
In place: A sorting algorithm is in place if it does not require extra memory,
except, possibly for a few memory units.
v' searching
* Find a given value, called a search key, in a given set.
= Examples of searching algorithms
> Sequential searching
» Binary searching...
v’ string processing
* A string is a sequence of characters from an alphabet.
» Text strings: letters, numbers, and special characters.
* String matching: searching for a given word/pattern in a text.
v" graph problems
* Informal definition
» A graph is a collection of points called vertices, some of which are
connected by line segments called edges.
Modeling real-life problems
Modeling WWW
communication networks
Project scheduling ...
Examples of graph algorithms
* QGraph traversal algorithms
= Shortest-path algorithms
* Topological sorting
v’ combinatorial problems
v’ geometric problems
v Numerical problems
4. Discuss Fundamentals of the analysis of algorithm efficiency elaborately.
Algorithm’s efficiency
Three notations
Analyze of efficiency of Mathematical Analysis of Recursive Algorithms
Analyze of efficiency of Mathematical Analysis of non-Recursive Algorithms
Analysis of algorithms means to investigate an algorithm’s efficiency with respect to
resources: running time and memory space.
* Time efficiency: how fast an algorithm runs.
= Space efficiency: the space an algorithm requires.
Measuring an input’s size
Measuring running time
Orders of growth (of the algorithm’s efficiency function)
Worst-base, best-case and average efficiency
B Measuring Input Sizes
= Efficiency is defined as a function of input size.
* Input size depends on the problem.
= Example 1, what is the input size of the problem of sorting n numbers?
* Example 2, what is the input size of adding two n by n matrices?

* Units for Measuring Running Time

» Measure the running time using standard unit of time measurements,
such as seconds, minutes?

» Depends on the speed of the computer.

» count the number of times each of an algorithm’s operations is
executed.

» Difficult and unnecessary

» count the number of times an algorithm’s basic operation is executed.

» Basic operation: the most important operation of the algorithm, the
operation contributing the most to the total running time.

» For example, the basic operation is usually the most time-consuming
operation in the algorithm’s innermost loop.

* Orders of Growth
> consider only the leading term of a formula
» Ignore the constant coefficient.

* Worst-Case, Best-Case, and Average-Case Efficiency

» Algorithm efficiency depends on the input size n

» For some algorithms efficiency depends on type of input.
Example: Sequential Search

» Problem: Given a list of n elements and a search key K, find an
element equal to K, if any.

» Algorithm: Scan the list and compare its successive elements with K
until either a matching element is found (successful search) of the list
is exhausted (unsuccessful search)

Worst case Efficiency

» Efficiency (# of times the basic operation will be executed) for the
worst case input of size n.

» The algorithm runs the longest among all possible inputs of size n.

Best case

> Efficiency (# of times the basic operation will be executed) for the best
case input of size n.

» The algorithm runs the fastest among all possible inputs of size n.

Average case:

» Efficiency (#of times the basic operation will be executed) for a
typical/random input of size n.

» NOT the average of worst and best case

—%—n*n*n

n*n
n log(n)

—8—nN

—e— log(n)

5. Explain Asymptotic Notations
Three notations used to compare orders of growth of an algorithm’s basic operation count
a. O(g(n)): class of functions f(n) that grow no faster than g(n)

A function #(n) is said to be in O(g(n)), denoted #(n) €O(g(n)), if t(n) is bounded above by
some constant multiple of g(n) for all large n, i.e., if there exist some positive constant ¢ and
some nonnegative integer ny such that t(n) < cg(n) for all n > ny

A

| og(n)
t(n)

doesn't
matter

= N
M

b. Q(g(n)): class of functions f(n) that grow at least as fast as g(n)

A function #(n) is said to be in Q(g(n)), denoted #(n) € Q(g(n)), if ¢(n) is bounded below by
some constant multiple of g(n) for all large n, i.e., if there exist some positive constant ¢ and
some nonnegative integer ny such that t(n) > cg(n) for all n > n,

doesn't
matter

1

| s R

0

c. O (g(n)): class of functions f(n) that grow at same rate as g(n)

A function #(n) is said to be in ®(g(n)), denoted #(n) € O(g(n)), if t(n) is bounded both above
and below by some positive constant multiples of g(n) for all large n, i.e., if there exist some
positive constant ¢; and ¢, and some nonnegative integer ny such that ¢, g(n) < t(n) < ¢; g(n) for
alln >ny

doesn't
matter

e, T
Q(g(n)), functions that grow at least as fast as g(n)

@ — @(g(n), functions that grow at the same rate as g(n)

< =

O(g(n)), functions that grow no faster than g(n)

v" Amortized efficiency

1 constant High time efficiency

log n logarithmic
n linear

nlog n nlog n
i quadratic
" cubic
28 exponential

slow n! factorial low time efficiency

6. List out the Steps in Mathematical Analysis of non recursive Algorithms.
v" Steps in mathematical analysis of nonrecursive algorithms:
* Decide on parameter n indicating input size
* Identify algorithm’s basic operation
* Check whether the number of times the basic operation is executed depends only
on the input size n. If it also depends on the type of input, investigate worst,
average, and best case efficiency separately.
Set up summation for C(n) reflecting the number of times the algorithm’s basic
operation is executed.
v Example: Finding the largest element in a given array
Algorithm MaxElement (A/0..n-1])
//Determines the value of the largest element in a given array
//Input: An array A[0..n-1] of real numbers
//Output: The value of the largest element in A
maxval €< A[0]
fori €< 1ton-1do
if A[i] > maxval
maxval < A[i]
return maxval
7. List out the Steps in Mathematical Analysis of Recursive Algorithms.
v" Decide on parameter n indicating input size
v' Identify algorithm’s basic operation
v Determine worst, average, and best case for input of size n

v’ Set up a recurrence relation and initial condition(s) for C(n)-the number of times the basic operation
will be executed for an input of size » (alternatively count recursive calls).
v' Solve the recurrence or estimate the order of magnitude of the solution
F(n)=1 ifn=0
n*(n-1)* (n-2)...3*2*1 ifn>0
v" Recursive definition
F(n)=1 ifn=0
n * F(n-1) ifn>0
Algorithm F(n)
if n=0
return 1 //base case
else
return F(n-1) * n //general case
Example Recursive evaluation of n ! (2)
v" Two Recurrences
The one for the factorial function value: F(n)
F(n)=F(n—-1) * n for everyn>0
F(0)=1
The one for number of multiplications to compute n!, M(n)
M(mn)=M(n-1)+ 1 for everyn >0
M(0)=0
M(n) € ® (n)
8. Explain in detail about linear search.
Sequential Search searches for the key value in the given set of items sequentially and returns the
position of the key value else returns -1.

ALGORITHM SequentialSearch(A[0..n — 1], K)

//Searches for a given value in a given array by sequential search
//Input: An array A[0..n — 1] and a search key K

//Output: The index of the first element of A that matches K

/f or —1 if there are no matching elements

i <0

while i < n and A[i] # K do
[<1+ 1

if i <n return

else return —1

Analysis:

For sequential search, best-case inputs are lists of size n with their first elements equal to a search key;
accordingly,
Cpw(n) = 1.
Average Case Analysis:
The standard assumptions are that

(a) the probability of a successful search is equal top (0 <=p<-=1) and
(b) the probability of the first match occurring in the ith position of the list is the same for every i.
Under these assumptions- the average number of key comparisons Caye(n) is found as follows.

In the case of a successful search, the probability of the first match occurring in the i th position of
the list is p / n for every 1, and the number of comparisons made by the algorithm in such a situation is
obviously i. In the case of an unsuccessful search, the number of comparisons is » with the probability of

such a search being (1- p). Therefore,

+ L 2 P . P
e G B i Gy T . — AT
avg(n) = [- + : Foronntsd - | +n nl ba-(1—p)

==[1424 - +i-+ - +n}+n(l - p)

n
T
=£ﬂuzi'—)+n{l—p}=

" +n(l - p),

For example, if p = 1 (i.e., the search must be successful), the average number of key comparisons made
by sequential search is (n + 1) /2; i.e., the algorithm will inspect, on average, about half of the list's elements.
If p = 0 (i.e., the search must be unsuccessful), the average number of key comparisons will be n because the
algorithm will inspect all » elements on all such inputs.

P+ 1)
2

9. Explain in detail about Tower of Hanoi.

In this puzzle, there are n disks of different sizes and three pegs. Initially, all the disks are on the first
peg in order of size, the largest on the bottom and the smallest on top. The goal is to move all the disks to the
third peg, using the second one as an auxiliary, if necessary. Only one disk can be moved at a time, and it is
forbidden to place a larger disk on top of a smaller one.

2

The general plan to the Tower of Hanoi problem.
The number of disks 7 is the obvious choice for the input's size indicator, and so is moving one disk as the

algorithm's basic operation. Clearly, the number of moves M(n) depends on n only, and we get the following
recurrence equation for it:

M(n) = M(n-1)+1+M(n-1)
With the obvious initial condition M(1) = 1, the recurrence relation for the number of moves M(n) is:
Mm) =2M(n- 1)+ 1 for n> 1, M(1) = 1.

The total number of calls made by the Tower of Hanoi algorithm: n-1
ft—1

C(r) = Z A
=l

=2n-1

UNIT 11

DIVIDE AND CONQUER METHOD AND GREEDY METHOD
Divide and conquer methodology — Merge sort — Quick sort — Binary search — Binary tree traversal
— Multiplication of large integers — Strassen’s matrix multiplication — Greedy method — Prim’s
algorithm — Kruskal’s algorithm — Dijkstra’s algorithm.

2 marks

1. What is brute force algorithm?
A straightforward approach, usually based directly on the problem’s statement and definitions of the
concepts involved.
2. List the strength and weakness of brute force algorithm.
Strengths
a. wide applicability,
b. simplicity
c. yields reasonable algorithms for some important problems
(e.g., matrix multiplication, sorting, searching, string matching)
Weaknesses
a. rarely yields efficient algorithms
b. some brute-force algorithms are unacceptably slow not as constructive as some other
design techniques
3. What is exhaustive search?
A brute force solution to a problem involving search for an element with a special property, usually among
combinatorial objects such as permutations, combinations, or subsets of a set.
4. Give the general plan of exhaustive search.
Method:
» generate a list of all potential solutions to the problem in a systematic manner
+ evaluate potential solutions one by one, disqualifying infeasible ones and, for an optimization
problem, keeping track of the best one found so far
* when search ends, announce the solution(s) found
5. Give the general plan for divide-and-conquer algorithms.
The general plan is as follows
e A problems instance is divided into several smaller instances of the same problem, ideally
about the same size
e The smaller instances are solved, typically recursively
e If necessary the solutions obtained are combined to get the solution of the original problem
Given a function to compute on ‘n’ inputs the divide-and-comquer strategy suggests splitting the inputs in
to’k’ distinct susbsets, 1<k <n, yielding ‘k’ subproblems. The subproblems must be solved, and then a
method must be found to combine subsolutions into a solution of the whole. If the subproblems are still
relatively large, then the divide-and conquer strategy can possibly be reapplied.
6. List the advantages of Divide and Conquer Algorithm
Solving difficult problems, Algorithm efficiency, Parallelism, Memory access, Round off control.
7. Define of feasibility
A feasible set (of candidates) is promising if it can be extended to produce not merely a solution, but an
optimal solution to the problem.
8. Define Hamiltonian circuit.
A Hamiltonian circuit is defined as a cycle that passes through all the vertices of the graph exactly once.

9. State the Master theorem and its use.
If f(n) € 0(n") where d * 0 in recurrence equation T(n) = aT(n/b)+f(n), then
0 (n%) if a<b*
T(n) € 0 (n’log n) if a=b*
0 (nlogb®) if a>b*
The efficiency analysis of many divide-and-conquer algorithms is greatly simplified by the use of Master
theorem.
10. What is the general divide-and-conquer recurrence relation?
An instance of size ‘n’ can be divided into several instances of size n/b, with ‘a’ of them needing to be
solved. Assuming that size ‘n’ is a power of ‘b’, to simplify the analysis, the following recurrence for the
running time is obtained:
T(n) = aT(n/b)+f(n)
Where f(n) is a function that accounts for the time spent on dividing the problem into smaller ones and on
combining their solutions.
11. Define mergesort.
Mergesort sorts a given array A[0..n-1] by dividing it into two halves a[0..(n/2)-1] and A[n/2..n-1] sorting
each of them recursively and then merging the two smaller sorted arrays into a single sorted one.
12. List the Steps in Merge Sort
1. Divide Step: If given array A has zero or one element, return S; it is already sorted. Otherwise,
divide A into two arrays, Al and A2, each containing about half of the elements of A.
2. Recursion Step: Recursively sort array A1 and A2.
3. Conquer Step: Combine the elements back in A by merging the sorted arrays Al and A2 into a
sorted sequence
13. List out Disadvantages of Divide and Conquer Algorithm
e Conceptual difficulty
e Recursion overhead
e Repeated subproblems
14. Define Quick Sort
Quick sort is an algorithm of choice in many situations because it is not difficult to implement, it is a good
\"general purpose\" sort and it consumes relatively fewer resources during execution.
15. List out the Advantages in Quick Sort
e Itis in-place since it uses only a small auxiliary stack.
e [t requires only n log(n) time to sort n items.
e It has an extremely short inner loop
e This algorithm has been subjected to a thorough mathematical analysis, a very precise statement
can be made about performance issues.
16. List out the Disadvantages in Quick Sort
« Itisrecursive. Especially if recursion is not available, the implementation is extremely complicated.
» It requires quadratic (i.e., n2) time in the worst-case.
» It is fragile i.e., a simple mistake in the implementation can go unnoticed and cause it to perform
badly.
17. What is the difference between quicksort and mergesort?
Both quicksort and mergesort use the divide-and-conquer technique in which the given array is partitioned
into subarrays and solved. The difference lies in the technique that the arrays are partitioned. For mergesort
the arrays are partitioned according to their position and in quicksort they are partitioned according to the
element values.

18. What is binary search?
Binary search is a remarkably efficient algorithm for searching in a sorted array. It works by comparing a
search key K with the arrays middle element A[m]. If they match the algorithm stops; otherwise the same
operation is repeated recursively for the first half of the array if K < A[m] and the second half if K >
A[m].

saarch har if KaAlm] saarch hara if K=Alm]

19. List out the 4 steps in Strassen’s Method?

1. Divide the input matrices A and B into n/2 * n/2 submatrices, as in equation (1).

2. Using ®(n2) scalar additions and subtractions, compute 14 n/2 * n/2 matrices Al, B1, A2, B2, ..., A7, B7.
3. Recursively compute the seven matrix products Pi =AiBi fori1=1, 2, 7.

4. Compute the desired submatrices r, s, t, u of the result matrix C by adding and/or subtracting various
combinations of the Pi matrices, using only ®(n2) scalar additions and subtractions.

16 marks

1. Explain Divide And Conquer Method
v The most well known algorithm design strategy is Divide and Conquer Method. It

e Divide the problem into two or more smaller subproblems.
e Conquer the subproblems by solving them recursively.
e Combine the solutions to the subproblems into the solutions for the original problem.

a problem of size n

subproblem 1 subproblem 2
of size n/2 of size n/2

a solution to a solution to
subproblem 1 subproblem 2

a solution to
the original problem

v Divide and Conquer Examples
e Sorting: mergesort and quicksort
e Tree traversals

e Binary search
e Matrix multiplication-Strassen’s algorithm
2. Explain Merge Sort with suitable example.
v Merge sort definition.
Mergesort sorts a given array A[0..n-1] by dividing it into two halves a[0..(n/2)-1] and A[n/2..n-1]
sorting each of them recursively and then merging the two smaller sorted arrays into a single sorted
one.
Steps in Merge Sort
1. Divide Step
If given array A has zero or one element, return S; it is already sorted. Otherwise, divide A
into two arrays, Al and A2, each containing about half of the elements of A.
2. Recursion Step
Recursively sort array A1 and A2.
3. Conquer Step
Combine the elements back in A by merging the sorted arrays Al and A2 into a sorted
sequence
Algorithm for merge sort.
ALGORITHM Mergesort(A[0..n-1])
//Sorts an array A[0..n-1] by recursive mergesort
//Input: An array A[0..n-1] of orderable elements
//Output: Array A[0..n-1] sorted in nondecreasing order
ifn>1
copy A[0..(n/2)-1] to B[0..(n/2)-1]
copy A[(n/2)..n-1] to C[0..(n/2)-1]
Mergesort(B[0..(n/2)-1])
Mergesort(C[0..(n/2)-1])
Merge(B,C,A)
Algorithm to merge two sorted arrays into one.
ALGORITHM Merge (B [0..p-1], C[0..g-1], A[0..p+q-1])
//Merges two sorted arrays into one sorted array
//Input: arrays B[0..p-1] and C[0..q-1] both sorted
//Output: sorted array A [0..p+qg-1] of the elements of B & C
I 0;5 0k O
while [<pandj<qdo
if B[1] <= C[j]
Alk] BII; T I+l
else
Akl Cjl;jj+!
k ktl
ifi=p
copy C[j..g-1] to A [k..p+q-1]
else
copy BJi..p-1] to A [k..p+q-1]
3. Discuss Quick Sort
v Quick Sort definition
Quick sort is an algorithm of choice in many situations because it is not difficult to implement, it is a
good \"general purpose\" sort and it consumes relatively fewer resources during execution.
v Quick Sort and divide and conquer

e Divide: Partition array A[l..r] into 2 subarrays, A[l..s-1] and A[s+1..r] such that each element of
the first array is <A[s] and each element of the second array is > A[s]. (Computing the index of s is
part of partition.)

e Implication: A[s] will be in its final position in the sorted array.

e Conquer: Sort the two subarrays A[l..s-1] and A[s+1..r] by recursive calls to quicksort

e Combine: No work is needed, because A[s] is already in its correct place after the partition is
done, and the two subarrays have been sorted.

Steps in Quicksort

e Select a pivot w.r.t. whose value we are going to divide the sublist. (e.g., p = A[l])

e Rearrange the list so that it starts with the pivot followed by a < sublist (a sublist whose elements
are all smaller than or equal to the pivot) and a > sublist (a sublist whose elements are all greater than
or equal to the pivot) Exchange the pivot with the last element in the first sublist(i.e., < sublist) — the
pivot is now in its final position

e Sort the two sublists recursively using quicksort.

-
Ali]=p

v" The Quicksort Algorithm
ALGORITHM Quicksort(A[l.r])
//Sorts a subarray by quicksort
//Input: A subarray A[l..r] of A[0..n-1],defined by its left and right indices 1 and r
//Output: The subarray A[l..r] sorted in nondecreasing order
ifl<r
s € Partition (A[L..r]) // s is a split position
Quicksort(A[l..s-1])
Quicksort(A[s+1..r]
ALGORITHM Partition (Al ..r])
//Partitions a subarray by using its first element as a pivot
//Input: A subarray A[l..r] of A[0..n-1], defined by its left and right indices and r (1 <r)
//Output: A partition of A[l..r], with the split position returned as this function’s value
P <A[l]
1<hLj€r+1;
Repeat
repeat i € i+ 1 until A[i]>=p //left-right scan
repeat j €j — 1 until A[j] <= p//right-left scan
if (i <)) //meed to continue with the scan
swap(A[i], a[j])
until 1 >= //no need to scan
swap(A[l], A[j])
return j
v" Advantages in Quick Sort
* It is in-place since it uses only a small auxiliary stack.
* It requires only n log(n) time to sort n items.
* It has an extremely short inner loop

* This algorithm has been subjected to a thorough mathematical analysis, a very precise statement can be
made about performance issues.
v" Disadvantages in Quick Sort
« It is recursive. Especially if recursion is not available, the implementation is extremely complicated.
* It requires quadratic (i.e., n2) time in the worst-case.
« It is fragile i.e., a simple mistake in the implementation can go unnoticed and cause it to perform badly.
v' Efficiency of Quicksort

Based on whether the partitioning is balanced.

Best case: split in the middle — ®(n log n)

C(n) =2C(n/2) + B(n) //2 subproblems of size n/2 each

Worst case: sorted array! — O()

C(n) = C(n-1) + n+1 //2 subproblems of size 0 and n-1 respectively

Average case: random arrays — O(n log n)

4. Explain Binary Search.

v Binary Search —Iterative Algorithm
ALGORITHM BinarySearch(A[0..n-1], K)
//Implements nonrecursive binary search
//Input: An array A[0..n-1] sorted in ascending order and
/! a search key K
//Output: An index of the array’s element that is equal to K
/! or —1 if there is no such element
1<0,r<n-1
while I <r do //1 and r crosses over—> can’t find K.

m <L (1+1)/2]

if K = A[m] return m //the key is found

else

if K < A[m] r& m — 1//the key is on the left half of the array
else 1€ m+1 // the key is on the right half of the array

return -1
v Binary Search — a Recursive Algorithm
ALGORITHM BinarySearchRecur(A[0..n-1], 1, r, K)
ifl>r //base case 1: 1 and r cross over—> can’t find K
return —1
else
m€[(1+r1)/2]
if K=A[m] //base case 2: K is found
return m
else //general case: divide the problem.
if K<A[m] //the key is on the left half of the array
return BinarySearchRecur(A[0..n-1], I, m-1, K)
else //the key is on the left half of the array
return BinarySearchRecur(A[0..n-1], m+1, r, K)
v Binary Search — Efficiency
e recurrence relation
Cn)=C(n/2)+2
e Efficiency

5.

C(n) € O(log n)
Explain Strassen’s Algorithm
v Multiplication of Large Integers
o Multiplication of two n-digit integers.
o Multiplication of a m-digit integer and a n-digit integer (where n > m) can be
modeled as the multiplication of 2 n-digit integers (by padding n — m Os before the
first digit of the m-digit integer)

o Brute-force algorithm
Coo Co1 00 Q01

Ci0o Cnn a0 ann

ago * boo + ag1 * byo ago * bor +ag1 * by

a10* boo + a1 * byo aj10* bor +an * b

o 8 multiplications

o 4 additions

o Efficiency class: ® (n3)

v’ Strassen’s Algorithm (two 2x2 matrices)

Coo Col 00 4ol 00 boi
%

Cio C11 a0 an bio b
m; T my-1ns+my m3;+ ms
mp +my m; +mj3-mp+mg

m; = (a0 + ar1) * (boo + b11)
my = (19 +ai1) * boo
mj3 = ago * (bo1 - b11)
my = aj; * (big - boo)
ms = (ago + a1) * bn
mg = (10 - a0) * (boo + bo1)
m7 = (a1 - a11) * (bio + b1
 Efficiency of Strassen’s Algorithm
o Ifn is not a power of 2, matrices can be padded with rows and columns with zeros
o Number of multiplications
o Number of additions
o Other algorithms have improved this result, but are even more complex

. Explain in detail about Travelling Salesman Problem using exhaustive search.

Given n cities with known distances between each pair, find the shortest tour that passes through all
the cities exactly once before returning to the starting city

Alternatively: Find shortest Hamiltonian circuit in a weighted connected graph

-
:

Example :

8

4
Tour

a—b—oc—od—a 2+3+7+5 =17
a—b—d—c—a 2+4+7+8 =21
a—c—b—od—a 8+3+4+5 =120
a—c—d—b—a 8+7+4+2 =21
a—d—b—c—a 5+4+3+8 = 20
a—d—c—b—a 5+7+3+2 =17

|”5 3

Efficiency: O((n-1)!)
. Explain in detail about knapsack problem.
Given n items:
weights: w; wy ... wy,
values: Vi V2 .. Vy
a knapsack of capacity W
Find most valuable subset of the items that fit into the knapsack
Example: Knapsack capacity W=16
item weight value
1 2 $20
2 5 $30
3 10 $50
4
S

5 $10
ubset Total weight Total value
{1} 2 $20
{2} 5 $30
{3} 10 $50
{4} 5 $10
{1,2} 7 $50
{1,3} 12 $70
{1,4} 7 $30
{2,3} 15 $80
{2,4} 10 $40
{3,4} 15 $60
{1,2,3} 17 not feasible
{1,2,4} 12 $60

{1,3,4} 17 not feasible
{2,3,4} 20 not feasible
{1,2,3,4} 22 not feasible
Efficiency: O2"n)
8. Explain in detail about closest pair problem.
Find the two closest points in a set of # points (in the two-dimensional Cartesian plane).

Brute-force algorithm
Compute the distance between every pair of distinct points and return the indexes of the points for which

the distance is the smallest.

ALGORITHM BruteForceClosestPoints(P)
/Mnput: A list P of n (n > 2) points P; = (x1, yy)
/[/Output: Indices index1 and index2 of the closest pair of points
dmin < o
fori < 1lton—1do

for j <i+1tondo
d < sqri((x; — x;)* + (y; — ¥;)*) llsqrt is the square root function

ifd <dmin
dmin < d; index] «i; index2 « j

return index1. index2

Efficiency: @(n”2) multiplications (or sqrt)

UNIT - III
DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE

Computing a Binomial Coefficient — Warshall“s and Floyd™ algorithm — Optimal Binary Search Trees — Knapsack
Problem and Memory functions. Greedy Technique— Prim™s algorithm- Kruskal's Algorithm-Dijkstra's Algorithm-
Huffman Trees.

2 marks

1. Define dynamic programming.
Dynamic programming is an algorithm design method that can be used when a solution to the problem is
viewed as the result of sequence of decisions.
Dynamic programming is a technique for solving problems with overlapping subproblems. These sub
problems arise from a recurrence relating a solution to a given problem with solutions to its smaller sub
problems only once and recording the results in a table from which the solution to the original problem is
obtained. It was invented by a prominent U.S Mathematician, Richard Bellman in the 1950s.
2. What are the features of dynamic programming?
e Optimal solutions to sub problems are retained so as to avoid recomputing their values.
¢ Decision sequences containing subsequences that are sub optimal are not considered.
e [t definitely gives the optimal solution always.
3. What are the drawbacks of dynamic programming?
e Time and space requirements are high, since storage is needed for all level.
e Optimality should be checked at all levels.
4. Write the general procedure of dynamic programming.
The development of dynamic programming algorithm can be broken into a sequence of 4 steps.
e Characterize the structure of an optimal solution.
e Recursively define the value of the optimal solution.
e Compute the value of an optimal solution in the bottom-up fashion.
e Construct an optimal solution from the computed information.
. Define principle of optimality.
It states that an optimal sequence of decisions has the property that whenever the initial stage or
decisions must constitute an optimal sequence with regard to stage resulting from the first decision.
. Write the difference between the Greedy method and Dynamic programming.
e Greedy method
1. Only one sequence of decision is generated.
2. It does not guarantee to give an optimal solution always.
¢ Dynamic programming
1. Many number of decisions are generated.
2. It definitely gives an optimal solution always.
7. What is greedy technique?
Greedy technique suggests a greedy grab of the best alternative available in the hope that a sequence of
locally optimal choices will yield a globally optimal solution to the entire problem. The choice must be
made as follows
e Feasible : It has to satisfy the problem’s constraints
o Locally optimal : It has to be the best local choice among all feasible choices available on that step.
e Irrevocable : Once made, it cannot be changed on a subsequent step of the algorithm

8. Write any two characteristics of Greedy Algorithm?

e To solve a problem in an optimal way construct the solution from given set of candidates.As the
algorithm proceeds, two other sets get accumulated among this one set contains the candidates that
have been already considered and chosen while the other set contains the candidates that have been
considered but rejected.

9. What is the Greedy choice property?

e The first component is greedy choice property (i.e.) a globally optimal solution can arrive at by
making a locally optimal choice.

e The choice made by greedy algorithm depends on choices made so far but it cannot depend on any
future choices or on solution to the sub problem.

e [t progresses in top down fashion.

10. What is greedy method?
Greedy method is the most important design technique, which makes a choice that looks best at that
moment. A given ‘n’ inputs are required us to obtain a subset that satisfies some constraints that is the
feasible solution. A greedy method suggests that one can device an algorithm that works in stages
considering one input at a time.
11. What are the steps required to develop a greedy algorithm?
Determine the optimal substructure of the problem.
Develop a recursive solution.
Prove that at any stage of recursion one of the optimal choices is greedy choice. Thus it is always
safe to make greedy choice.
Show that all but one of the sub problems induced by having made the greedy choice are empty.
Develop a recursive algorithm and convert into iterative algorithm.
12. What is greedy technique?
Greedy technique suggests a greedy grab of the best alternative available in the hope that a sequence

of locally optimal choices will yield a globally optimal solution to the entire problem. The choice
must be made as follows.

Feasible: It has to satisfy the problem’s constraints.
Locally optimal: It has to be the best local choice among all feasible choices available on that step.
Irrevocable : Once made, it cannot be changed on a subsequent step of the algorithm
13. What are the labels in Prim’s algorithm used for?
Prim’s algorithm makes it necessary to provide each vertex not in the current tree with the information about
the shortest edge connecting the vertex to a tree vertex. The information is provided by attaching two labels
to a vertex.
e The name of the nearest tree vertex.
e The length of the corresponding edge
14. How are the vertices not in the tree split into?
The vertices that are not in the tree are split into two sets
e Fringe : It contains the vertices that are not in the tree but are adjacent to atleast one tree vertex.
e Unseen : All other vertices of the graph are called unseen because they are yet to be affected by the
algorithm.
15. What are the operations to be done after identifying a vertex u* to be added to the tree?
After identifying a vertex u* to be added to the tree, the following two operations need to be performed
e Move u* from the set V-V to the set of tree vertices V.
e For each remaining vertex u in V-V that is connected to u* by a shorter edge than the u’s current
distance label, update its labels by u* and the weight of the edge between u* and u, respectively.

16. What is the use of Dijksra’s algorithm?
Dijkstra’s algorithm is used to solve the single-source shortest-paths problem: for a given vertex called the
source in a weighted connected graph, find the shortest path to all its other vertices. The single-source
shortest-paths problem asks for a family of paths, each leading from the source to a different vertex in the
graph, though some paths may have edges in common.
17. Define Spanning tree.
Spanning tree of a connected graph G: a connected acyclic subgraph of G that includes all of G’s
vertices

18. What is minimum spanning tree.
Minimum spanning tree of a weighted, connected graph G: a spanning tree of G of the minimum total
weight

16 marks

1. Write Short note on Dijkstra's Algorithm

Shortest Paths — Dijkstra’s Algorithm

Shortest Path Problems

o All pair shortest paths (Floy’s algorithm)

o Single Source Shortest Paths Problem (Dijkstra’s algorithm): Given a weighted graph G, find the
shortest paths from a source vertex s to each of the other vertices.

o Prim’s and Dijkstra’s Algorithms
o Generate different kinds of spanning trees
o Prim’s: a minimum spanning tree.
* Dijkstra’s : a spanning tree rooted at a given source s, such that the
distance from s to every other vertex is the shortest.
o Different greedy strategies
* Prims’: Always choose the closest (to the tree) vertex in the priority
queue Q to add to the expanding tree V.
* Dijkstra’s : Always choose the closest (to the source) vertex in the
priority queue Q to add to the expanding tree Vr.
o Different labels for each vertex
* Prims’: parent vertex and the distance from the tree to the vertex.
» Dijkstra’s : parent vertex and the distance from the source to the
vertex.
2. Explain Kruskal's Algorithm
v Greedy Algorithm for MST: Kruskal
o Edges are initially sorted by increasing weight

Start with an empty forest
“grow” MST one edge at a time
* intermediate stages usually have forest of trees (not connected)
at each stage add minimum weight edge among those not yet used that does
not create a cycle
* at each stage the edge may:
* expand an existing tree
* combine two existing trees into a single tree
= create a new tree
o need efficient way of detecting/avoiding cycles
V' algorithm stops when all vertices are included
ALGORITHM Kruscal(G)
//Input: A weighted connected graph G = <V, E>
//Output: Er, the set of edges composing a minimum spanning tree of G.
Sort E in nondecreasing order of the edge weights
wieir) <= ... <=w(e;g)
Er € O ecounter € 0 //initialize the set of tree edges and its size
k €0
while encounter < |V] -1 do
k€k+1
if Er U {ey} is acyclic
Er € ErU {ey} ; ecounter ecounter + 1

return Er
3. Discuss Prim's Algorithm
v" Minimum Spanning Tree (MST)
Spanning tree of a connected graph G: a connected acyclic subgraph (tree) of G that includes

all of G’s vertices.
Minimum Spanning Tree of a weighted, connected graph G: a spanning tree of G of

minimum total weight.
Example:

4

3

v" Prim’s MST algorithm
v’ Start with a tree , Ty ,consisting of one vertex
v' “Grow” tree one vertex/edge at a time
o Construct a series of expanding su trees Ty, Ty, ... Ty .At each stage construct Tj; from T;

y

» adding the minimum weight edge connecting a vertex in tree (T;) to one not yet in tree
e choose from “fringe” edges
(this is the “greedy” step!) Or (another way to understand it)
expanding each tree (Ti) in a greedy manner by attaching to it the nearest vertex not in that tree. (a
vertex not in the tree connected to a vertex in the tree by an edge of the smallest weight)
Algorithm stops when all vertices are included
Algorithm:
ALGORITHM Prim(G)
//Prim’s algorithm for constructing a minimum spanning tree
//Input A weighted connected graph G=V, E
//Output Er, the set of edges composing a minimum spanning tree of G
Vr <"’{VO}
Er<F
fori<1 to [V|-1 do
Find the minimum-weight edge e*=(v*,u*) among all the edges (v,u) such that vis in Vrand u is in
V-Vr
Vr <V U {u*}
Er «Er U {e*}
return Et
. Write short note on Greedy Method
A greedy algorithm makes a locally optimal choice in the hope that this choice will lead to a globally
optimal solution.
The choice made at each step must be:
Feasible
= Satisfy the problem’s constraints
locally optimal
» Be the best local choice among all feasible choices
Irrevocable
* Once made, the choice can’t be changed on subsequent steps.
Applications of the Greedy Strategy
o Optimal solutions:
* change making
* Minimum Spanning Tree (MST)
* Single-source shortest paths
* Huffman codes
o Approximations:
* Traveling Salesman Problem (TSP)
* Khnapsack problem
» other optimization problems
5. What does dynamic programming has in common with divide-and-Conquer?
v Dynamic Programming
e Dynamic Programming is a general algorithm design technique. “Programming” here means
“planning”.
e Invented by American mathematician Richard Bellman in the 1950s to solve optimization
problems
e Main idea:
a. solve several smaller (overlapping) subproblems
b. record solutions in a table so that each subproblem is only solved once

c. final state of the table will be (or contain) solution
e Dynamic programming vs. divide-and-conquer
a. partition a problem into overlapping subproblems and independent ones
b. store and not store solutions to subproblems
v Example: Fibonacci numbers
Recall definition of Fibonacci numbers:
A0)=10
A =1
An) = fin-1) + f(n-2)
o Computing the ™ Fibonacci number recursively (top-down):
f(n)

TN

+ fin-2)

N\ ™

f(n-2) + f(n-3) f(n-3) + f(n-4)

Computing the n™ fibonacci number using bottom-up iteration:
f0)=0
A =1
f2)y=0+1=1
f3)=1+1=2
f(4)=1+2=3
f(5)=2+3=5
An-2)=
fin-1)=
fin) = fin-1) + fin-2)
ALGORITHM Fib(n)
F[0] € 0,F[1] € 1
fori<2tondo
F[i] € F[i-1] + F[i-2]
return F[n]
6. Disuss Warshall’s Algorithm with suitable diagrams?
e Main idea: Use a bottom-up method to construct the transitive closure of a given digraph with n
vertices through a series of nxn boolean matrices:
R” . R* R® _ R™
RY :r;® =1in RV | iff
there is an edge from i to j; or
there is a path from i to j going through vertex 1; or
there is a path from i to j going through vertex 1 and/or 2; or

there is a path from i to j going through 1, 2, ... and/or k

1001

0000

0100

Does not allow an
intermediate node

R(l)

0010

1011

0000

0100

Allow 1 to be
intermediate node

Allow 1,2 to be an
intermediate node

1011
0000
1111

Allow 1,2,3 to be an intermediate
node

1111
0000
1111

Allow 1,2,3.4 to be an

intermediate node

In the k™ stage: to determine R™ is to determine if a path exists between two vertices i, j using
just vertices among 1,....,k

(D = 1 (path using just 1 ,...,k-1)

k) _ 1.
vt = 1: or
(rik(k'l) =1 and rki(k'l)) =1 (path fromitok
and from k to i
using just 1 ,...,k-1)

7. Explain how to Floyd’s Algorithm works.
» All pairs shortest paths problem: In a weighted graph, find shortest paths between every pair of
vertices.
» Applicable to: undirected and directed weighted graphs; no negative weight.
» Same idea as the Warshall’s algorithm : construct solution through series of matrices D(0) , D(1), ...,
D(n)

Weight matrix distance matrix
* D(k) : allow 1, 2, ..., k to be intermediate vertices.
* In the kth stage, determine whether the introduction of k as a new eligible intermediate vertex will
bring about a shorter path from i to j.
* dij(k) = min{dij(k-1), dik(k-1) + dkj(k-1} for k > 1, dij(0) = wij

(th stage

8. Explain Knapsack problem

v" The problem
Find the most valuable subset of the given n items that fit into a knapsack of capacity W.

v" Consider the following sub problem P(i, j)
Find the most valuable subset of the first i items that fit into a knapsack of capacity j,

where 1 <i<n,and I<j<W
Let Vi, j] be the value of an optimal solution to the above subproblem P(i, j). Goal: V[n,

W]
9. Explain Memory Function algorithm for the Knapsack problem
v" The Knapsack Problem and Memory Functions

* The Recurrence
a. Two possibilities for the most valuable subset for the subproblem P(i, j)

1. It does not include the ith item: Vi, j| = V[i-1, j]
ii. It includes the ith item: V/i, j] = vi+ V[i-1, j —w;/
VIi, j] = max{V[i-1,j], vit V[i-1,j —w;] }, ifj—w; 20
VIi-1, j] ifj—wi<0
V[0, j] =0forj=>0and V[i, 0] =0 fori=>0

v" Memory functions:
Memory functions: a combination of the top-down and bottom-up method. The idea is to

solve the subproblems that are necessary and do it only once.

* Top-down: solve common subproblems more than once.
Bottom-up: Solve subproblems whose solution are not necessary for the solving the

original problem.
v" ALGORITHM MFKnapsack(i, j)
if V[i, j] <0 //if subproblem P(i, j) hasn’t been solved yet.
if j < Weights][i]
value € MFKnapsack(i— 1, j)

else
value €max(MFKnapsack(i — 1, j),
values[I] + MFKnapsck(i— 1, j — Weights[i]))

VIi, j] € value
return V[i, j]

10. Explain in detail about Huffman tree.
Any binary tree with edges labeled with 0’s and 1’s yields a prefix-free code of characters assigned to its

leaves. Optimal binary tree minimizing the average length of a codeword can be constructed as follows:

Huffman’s algorithm
o Initialize n one-node trees with alphabet characters and the tree weights with their frequencies.

o Repeat the following step n-1 times: join two binary trees with smallest weights into one (as left and
right subtrees) and make its weight equal the sum of the weights of the two trees.
o Mark edges leading to left and right subtrees with 0’s and 1°s, respectively.
Example:

character | A B|C|D

codeword 0.10.2]0.2

UNIT IV
ITERATIVE IMPROVEMENT

The Simplex MeFthod-The Maximum-Flow Problem — Maximum Matching in Bipartite Graphs- The Stable marriage
Problem.

2 marks

1. Define linear programming.
Every LP problem can be represented in such form

maximize 3x+ 5y maximize 3x + 5y + Ou + Ov
subject to x+ y<4 subject to x+ y+u
x+3y<6
x+3y +v =6
x>0, y>0 x>0, y>0, u=>0, v>0
Variables u and v, transforming inequality constraints into equality constrains, are called slack variables

2. What is basic solution?
A basic solution to a system of m linear equations in » unknowns (n > m) is obtained by setting n — m
variables to 0 and solving the resulting system to get the values of the other m variables. The variables
set to 0 are called nonbasic; the variables obtained by solving the system are called basic.
A basic solution is called feasible if all its (basic) variables are nonnegative.
3. Define flow and flow conservation requirement.
A flow is an assignment of real numbers x;; to edges (i,j) of a given network that satisfy the following:
o flow-conservation requirements: The total amount of material entering an intermediate vertex

must be equal to the total amount of the material leaving the vertex

2 X = 2 x5 fori=23,...,n-1
J:GDEE j:G)HEE

e capacity constraints

0 <Xx;j<u; for every edge (ij) € E
4. What is cut and min cut?

Let X be a set of vertices in a network that includes its source but does not include its sink, and let X, the
complement of X, be the rest of the vertices including the sink. The cuf induced by this partition of the
vertices is the set of all the edges with a tail in X and a head in X.

Capacity of a cut is defined as the sum of capacities of the edges that compose the cut.
We’ll denote a cut and its capacity by C(X,X) and ¢(X,X)
Note that if all the edges of a cut were deleted from the
network, there would be no directed path from source to sink
Minimum cut 1is a cut of the smallest capacity in a given network

5. State max — flow — min — cut theorem.
The value of maximum flow in a network is equal to the capacity of its minimum cut

6. Define Bipartite Graphs.
Bipartite graph: a graph whose vertices can be partitioned into two disjoint sets V and U, not necessarily

of the same size, so that every edge connects a vertex in V to a vertex in U. A graph is bipartite if and
only if it does not have a cycle of an odd length

7. What is augmentation and augmentation path?
An augmenting path for a matching M is a path from a free vertex in V to a free vertex in U whose edges

alternate between edges not in M and edges in M
e The length of an augmenting path is always odd
e Adding to M the odd numbered path edges and deleting from it the even numbered path edges
increases the matching size by 1 (augmentation)
One-edge path between two free vertices is special case of augmenting path.

16 marks

1. Explain in detail about simplex method.
Every LP problem can be represented in such form

maximize 3x+ 5y maximize 3x + 5y + Ou + Ov
subject to x+ y<4 subject to x+ y+u
x+3y<6
x+3y +v =6
x>0, »>0 x>0, y>0, u>0, v>0
Variables u and v, transforming inequality constraints into equality constrains, are called slack variables
A basic solution to a system of m linear equations in n unknowns (n > m) is obtained by setting n — m
variables to 0 and solving the resulting system to get the values of the other m variables. The variables
set to 0 are called nonbasic; the variables obtained by solving the system are called basic.
A basic solution is called feasible if all its (basic) variables are nonnegative.
Example x+ y+u =4
x+3y +v =6
(0, 0, 4, 6) is basic feasible solution
(x, y are nonbasic; u, v are basic)
There is a 1-1 correspondence between extreme points of LP’s feasible region and its basic feasible
solutions.
maximize z=3x+S5y+ 0u+0v
subject to x+ y+u =4
x+ 3y + v =6
x>0, y>0, u>0, v>0
basic feasible solution
0,0,4,6)

siple splution

L
Jy =1y WY

+
(BErIYe

wad |wwwa { wa o I

Simplex method:
Step O [Initialization] Present a given LP problem in standard form and set up initial tableau.
Step 1 [Optimality test] If all entries in the objective row are nonnegative — stop: the tableau represents

an optimal solution.
Step 2 [Find entering variable] Select (the most) negative entry in the objective row. Mark its column to
indicate the entering variable and the pivot column.
Step 3 [Find departing variable] For each positive entry in the pivot column, calculate the 8-ratio by
dividing that row's entry in the rightmost column by its entry in the pivot column. (If there are no
positive entries in the pivot column — stop: the problem is unbounded.) Find the row with the smallest
0-ratio, mark this row to indicate the departing variable and the pivot row.
Step 4 [Form the next tableau] Divide all the entries in the pivot row by its entry in the pivot column.
Subtract from each of the other rows, including the objective row, the new pivot row multiplied by the
entry in the pivot column of the row in question. Replace the label of the pivot row by the variable's
name of the pivot column and go back to Step 1.
maximize z=3x+S5y+ 0u+0v
subject to x+ y+u =4

x+3y + v =6
x>0, y>0, u=>0, v>0

wl= wir | =

2. Explain in detail about maximum flow problem.
Maximum Flow Problem

Problem of maximizing the flow of a material through a transportation network (e.g., pipeline
communications or transportation networks)

Formally represented by a connected weighted digraph with n vertices numbered from 1 to » with the
following properties:
contains exactly one vertex with no entering edges, called the_source (numbered 1)
contains exactly one vertex with no leaving edges, called the sink (numbered n)
has positive integer weight u; on each directed edge (ij), called the edge capacity,
indicating the upper bound on the amount of the material that can be sent from
this edge

Source

Definition of flow:
A flow is an assignment of real numbers x;; to edges (i,j) of a given network that satisfy the following:

o flow-conservation requirements: The total amount of material entering an intermediate vertex
must be equal to the total amount of the material leaving the vertex

2 X = 2 x5 fori=23,...,n-1
J:GDEE j:G)HEE

e capacity constraints
0 <Xx;j<u; for every edge (ij) € E
Flow value and Maximum Flow Problem
Since no material can be lost or added to by going through intermediate vertices of the network, the total
amount of the material leaving the source must end up at the sink:
z X1 = z Xin
Jj() ek Jjo(Gn)ekE
The value of the flow is defined as the total outflow from the source (= the total inflow into the sink).
Maximum-Flow Problem as LP problem
Maximize v =) xy;
jr(1j) e E

subject to

2 Xii = 2 Xij = 0 fori= 2, 3,..«..}'-1
JGgNeE j:Gy)ekE

.
0Sx;Su; forevery edge (iy) € E
Augmenting Path (Ford-Fulkerson) Method
Start with the zero flow (x;; = 0 for every edge)
On each iteration, try to find a flow-augmenting path from source to sink, which a path along
which some additional flow can be sent
If a flow-augmenting path is found, adjust the flow along the edges of this path to get a flow of
increased value and try again
If no flow-augmenting path is found, the current flow is maximum

Augmenting path: 1 -2 —3 —6

Augmenting path: | -4 —3<2 —5 —6

max flow value = 3

Finding a flow-augmenting path
To find a flow-augmenting path for a flow x, consider paths from source to sink in the underlying undirected
graph in which any two consecutive vertices 7,j are either:
+ connected by a directed edge (i to j) with some positive unused capacity r;; = u;; — x;;
— known as forward edge (—)
OR
+ connected by a directed edge (j to i) with positive flow x;;
— known as backward edge ()
If a flow-augmenting path is found, the current flow can be increased by r units by increasing x; by » on
each forward edge and decreasing x; by r» on each backward edge, where

r =min {r; on all forward edges, x;; on all backward edges}
Assuming the edge capacities are integers, » is a positive integer
On each iteration, the flow value increases by at least 1
Maximum value is bounded by the sum of the capacities of the edges leaving the source; hence
the augmenting-path method has to stop after a finite number of iterations
The final flow is always maximum, its value doesn’t depend on a sequence of augmenting paths
used
The augmenting-path method doesn’t prescribe a specific way for generating flow-augmenting
paths
e Selecting a bad sequence of augmenting paths could impact the method’s efficiency
Example:

2

0/U

U = large positive integer

Example 2 (cont.)

U;‘U
V=2U

0/1 J 4....4.

/IU 1/U

Requires 2U iterations to reach
maximum flow of value 2U

\-H_../'

Shortest-Augmenting-Path Algorithm
Generate augmenting path with the least number of edges by BFS as follows.
Starting at the source, perform BFS traversal by marking new (unlabeled) vertices with two labels:
» first label — indicates the amount of additional flow that can be brought from the source to the
vertex being labeled
second label — indicates the vertex from which the vertex being labeled was reached, with “+” or “~” added
to the second label to indicate whether the vertex was reached via a forward or backward edge
e The source is always labeled with co,-
e All other vertices are labeled as follows:
o If unlabeled vertex j is connected to the front vertex i of the traversal queue by a directed
edge from i to j with positive unused capacity r; = u; —x;; (forward edge), vertex j is labeled
with ,i", where [; = min{J;, r;}
If unlabeled vertex j is connected to the front vertex i of the traversal queue by a directed
edge from j to i with positive flow x;; (backward edge), vertex j is labeled /;,i", where /; =
min{li, in}
e If the sink ends up being labeled, the current flow can be augmented by the amount indicated by the
sink’s first label

The augmentation of the current flow is performed along the augmenting path traced by following
the vertex second labels from sink to source; the current flow quantities are increased on the forward
edges and decreased on the backward edges of this path

If the sink remains unlabeled after the traversal queue becomes empty, the algorithm returns the
current flow as maximum and stops

(@)
Queue: 1 4

Definition of a Cut:
Let X be a set of vertices in a network that includes its source but does not include its sink, and let X, the
complement of X, be the rest of the vertices including the sink. The cuf induced by this partition of the
vertices is the set of all the edges with a tail in X and a head in X.
Capacity of a cut is defined as the sum of capacities of the edges that compose the cut.
We’ll denote a cut and its capacity by C(X,X) and ¢(X,X)
Note that if all the edges of a cut were deleted from the
network, there would be no directed path from source to sink
Minimum cut is a cut of the smallest capacity in a given network

Examples of network cuts

IfX = {1} and X = {2,3,4,5,6}, C(X,.X) = {(1,2), (1,4)},c =5

If X ={1,2,3,4,5} and X = {6}, C(X,X) = {(3,6), (5,6)}, c =6
If X ={1,2,4} and X ={3,5,6}, C(X,X) = {(2,3), (2,5), (4,3)},c=9

Max-Flow Min-Cut Theorem
e The value of maximum flow in a network is equal to the capacity of its minimum cut

e The shortest augmenting path algorithm yields both a maximum flow and a minimum cut:
o maximum flow is the final flow produced by the algorithm
o minimum cut is formed by all the edges from the labeled vertices to unlabeled vertices on the
last iteration of the algorithm
all the edges from the labeled to unlabeled vertices are full, i.e., their flow amounts are equal
to the edge capacities, while all the edges from the unlabeled to labeled vertices, if any, have
zero flow amounts on them

Shortest-augmenting-path algorithm
Input: A network with single source 1, single sink n, and
positive integer capacities u;; on its edges (1, 7)

Output: A maximum flow ©
assign 2;; = 0 to every edge (4,7) in the network
label the source with oo, — and add the scurce to the empty queue Q
while not Empty((Q)) do

i — Front(Q); Dequeue(Q))

for every edge from i to j do //forward edges

if 7 is unlabeled

Tag < Wiy — X
if 145 > 0
lj «— min{l;,r;; }; label j with I;,i*

Enqueve(Q,7)
for every edge from j to i do //backward edges
if j is unlabeled
if xj; >0
l; « min{l;,z;}; label j with ;4™
Enqueue(Q,)
if the sink has been labeled
/ /augment along the augmenting path found
j«n //start at the sink and move backwards using second labels
while 7 # 1 //the source hasn’t been reached
if the second label of vertex j is 4™
Ty — T+ ln
else //the second label of vertex j is ¢~
.'ij;,j — Ly — Z-”.
J—1
erase all vertex labels except the ones of the source
reinitialize @@ with the source
return z //the current flow is maximum

Time Efficiency

e The number of augmenting paths needed by the shortest-augmenting-path algorithm never
exceeds nm/2, where n and m are the number of vertices and edges, respectively
Since the time required to find shortest augmenting path by breadth-first search is in
O(n+m)=0(m) for networks represented by their adjacency lists, the time efficiency of the
shortest-augmenting-path algorithm is in O(nm?) for this representation
More efficient algorithms have been found that can run in close to O(nm) time, but these
algorithms don’t fall into the iterative-improvement paradigm

3. Explain in detail about maximum bipartite matching

Bipartite Graphs

Bipartite graph: a graph whose vertices can be partitioned into two disjoint sets V and U, not necessarily of

the same size, so that every edge connects a vertex in V to a vertex in U
A graph is bipartite if and only if it does not have a cycle of an odd length

A bipartite graph is 2-colorable: the vertices can be colored in two colors so that every edge has its vertices
colored differently

Matching in a Graph

A matching in a graph is a subset of its edges with the property that no two edges share a vertex a matching
in this graph

A maximum (or maximum cardinality) matching is a matching with the largest number of edges
» always exists
* not always unique
Free Vertices and Maximum Matching
* A matching in this graph (M)
For a given matching M, a vertex is called free (or unmatched) if it is not an endpoint of any edge in M;
otherwise, a vertex is said to be matched
* Ifevery vertex is matched, then M is a maximum matching
» If there are unmatched or free vertices, then M may be able to be improved
* We can immediately increase a matching by adding an edge connecting two
free vertices (e.g., (1,6) above)
Augmenting Paths and Augmentation
An augmenting path for a matching M is a path from a free vertex in V to a free vertex in U whose edges
alternate between edges not in M and edges in M
e The length of an augmenting path is always odd
e Adding to M the odd numbered path edges and deleting from it the even numbered path edges
increases the matching size by 1 (augmentation)
One-edge path between two free vertices is special case of augmenting path
* Matching on the right is maximum (perfect matching)
* Theorem A matching M is maximum if and only if there exists
no augmenting path with respect to M

Augmenting Path Method (template)
e Start with some initial matching
o e.g., the empty set
¢ Find an augmenting path and augment the current matching along that path
o e.g., using breadth-first search like method
e When no augmenting path can be found, terminate and return the last matching, which is maximum
BFS-based Augmenting Path Algorithm
e Initialize queue Q with all free vertices in one of the sets (say V)
e While Q is not empty, delete front vertex w and label every unlabeled vertex u adjacent to w as
follows:

o Casel (w isin V): If u is free, augment the matching along the path ending at u by
moving backwards until a free vertex in V is reached. After that, erase all labels and
reinitialize Q with all the wvertices in V that are still free
If u is matched (not with w), label u with w and enqueue u

e C(Case?2 (w isin U) Label its matching mate v with w and enqueue v

e After Q becomes empty, return the last matching, which is maximum
Each vertex is labeled with the vertex it was reached from. Queue deletions are indicated by arrows. The
free vertex found in U is shaded and labeled for clarity; the new matching obtained by the augmentation is
shown on the next slide.

b This matching is maximum since there are no remaining free vertices in V (the queue is empty)
b Note that this matching differs from the maximum matching found earlier.

Maximum-matching algorithm for bipartite graphs

Input: A bipartite graph & = (V, U, E)

Output: A maximum-cardinality matching M in the input graph
initialize set M of edges with some valid matching (e.g.. the empty set)

initialize queue ¢} with all the free vertices in V (in any order)
while not Empiy(Q) do
w «— Front(Q); Degueue(Q)
ifweV
for every vertex u adjacent to w do
if u is free
//augment
M — M U (w, u)
e W
while v is labeled do
u «— vertex indicated by v's label: A — M — (v, u)
v «— vertex indicated by u's label: M — M U (v, u)
remove all vertex labels
reinitialize @ with all free vertices in V
break //exit the for loop
else //u is matched
if (w,u) € M and u is unlabeled
label u with w
Engueue(Q. u)
else //w € U (and matched)
label the mate v of w with "wj
Engueue(Q.v)
return M //current matching is maximum

4. Explain detail stable marriage problem’
Stable Marriage Problem:
There is a set Y = {mj,...,m,} of n men and a set X = {wy,...,w,} of n women. Each man has a ranking list
of the women, and each woman has a ranking list of the men (with no ties in these lists).
A marriage matching M is a set of n pairs (m;, w)).
A pair (m, w) is said to be a blocking pair for matching M if man m and woman w are not matched in M but
prefer each other to their mates in M.
A marriage matching M is called stable if there is no blocking pair for it; otherwise, it’s called unstable.
The stable marriage problem is to find a stable marriage matching for men’s and women’s given
preferences.
An instance of the stable marriage problem can be specified either by two sets of preference lists or by a
ranking matrix, as in the example below.
Step O Start with all the men and women being free

Step 1 While there are free men, arbitrarily select one of them and do the following:
Proposal The selected free man m proposes to w, the next woman on his preference list

Response 1f w is free, she accepts the proposal to be matched with m. If she is not free, she
compares m with her current mate. If she prefers m to him, she accepts m’s proposal, making her former
mate free; otherwise, she simply rejects m’s proposal, leaving m free
Step 2 Return the set of n matched pairs

men’s preferences women'’s preferences
lst 2nd 3rd lst an 3rd
Bob: Lea Ann Sue Ann: Jim Tom Bob
Jim: Lea Sue Ann Lea: Tom Bob Jim
Tom: Sue Lea Ann Sue: Jim Tom Bob
ranking matrix
Ann Lea Sue
Bob 2,3 1,2 3,3
Jim 3,1 1,3 2,1
Tom 3,2 2,1 1,2
{(Bob, Ann) (Jim, Lea) (Tom, Sue)} is unstable
{(Bob, Ann) (Jim, Sue) (Tom, Lea)} is stable

Free men:
B A N

Bob, Jim, Tom

Bob proposed to Lea
Lea accepted

Free men: Jim Tom _] Jim proposed to Lea
Lea rejected

Example (cont.)

Anmn Lea Sue
23 L1232 33

Free men:
Jim, Tom 3.1 13 | 213
32 21 1,2

Free men: Bob ' |33
Tom Jim 1,3 [231}

Tom 21 12
Example (cont.)

Amn Lea Sue
Tom Jm 31 13 | 21

Tom 32 | 21 12

Free men:
Bob

Jim proposed to Sue
Sue accepted

Tom proposed to Sue
Sue rejected

Tom proposed to Lea
Lea replaced Bob
with Tom

Bob proposed to Ann
Ann accepted

The algorithm terminates after no more than 7” iterations with

a stable marriage output

The stable matching produced by the algorithm is always man-optimal: each man gets the
highest rank woman on his list under any stable marriage. One can obtain the woman-
optimal matching by making women propose to men

A man (woman) optimal matching is unique for a given set of participant preferences

The stable marriage problem has practical applications such as matching medical-school
graduates with hospitals for residency training

UNIT V

COPING WITH THE LIMITATIONS OF ALGORITHM POWER

Limitations of Algorithm Power-Lower-Bound Arguments-Decision Trees-P, NP and NP-Complete Problems--
Coping with the Limitations - Backtracking — n-Queens problem — Hamiltonian Circuit Problem — Subset Sum
Problem-Branch and Bound — Assignment problem — Knapsack Problem — Traveling Salesman Problem-
Approximation Algorithms for NP — Hard Problems — Traveling Salesman problem — Knapsack problem.

2 marks

1. What is meant by n-queen Problem?
The problem is to place n queens on an n-by-n chessboard so that no two queens attack each other by being
in the same row or in the same column or in the same diagonal.
2. Define Backtracking
Backtracking is used to solve problems with tree structures. Even problems seemingly remote to trees such
as a walking a maze are actually trees when the decision \'back-left-straight-right\' is considered a node in a
tree. The principle idea is to construct solutions one component at a time and evaluate such partially
constructed candidates
3. What is the Aim of Backtracking?
Backtracking is the approach to find a path in a tree. There are several different aims to be achieved :
* just a path
» all paths
* the shortest path
4. Define the Implementation considerations of Backtracking?
The implementation bases on recursion. Each step has to be reversible; hence the state has to be saved
somehow. There are two approaches to save the state:
* As full state on the stack
* As reversible action on the stack
5. List out the implementation procedure of Backtracking
As usual in a recursion, the recursive function has to contain all the knowledge. The standard implementaion
is:
1. check if the goal is achieved REPEAT
2. check if the next step is possible at all
3. check if the next step leads to a known position - prevent circles
4. do this next step UNTIL (the goal is achieved) or (this position failed)
6. Define Approximation Algorithm
Approximation algorithms are often used to find approximate solutions to difficult problems of
combinatorial optimization.
7. Define Promising Node?
A node in a state-space tree is said to be promising if it corresponds to a partially constructed solution that
may still lead to a complete solution.
8. Define Non-Promising Node?
A node in a state-space tree is said to be nonpromising if it backtracks to the node’s parent to consider the
nest possible solution for its last component.
9. Why the search path in a state-space tree of a branch and bound algorithm is terminated?
e The value of the node’s bound is not better than the value of the best solution.

e The node represents no feasible solutions because the constraints of the problem are already
violated.
e The subset of feasible solutions represented by the node consists of a single point.

10. Define Subset-Sum Problem?
This problem find a subset of a given set S={s1,s2, ,sn} of n positive integers whose sum is equal to a
given positive integer d.

11. Define Traveling Salesman Problem?
Given a complete undirected graph G=(V, E) that has nonnegative integer cost c(u, v) associated with each
edge (u, v) in E, the problem is to find a hamiltonian cycle (tour) of G with minimum cost.

12. Define Knapsack Problem
Given n items of known weight wi and values vi=1,2,..,n and a knapsack of capacity w, find the most
valuable subset of the items that fit in the knapsack.

13. Define Branch and Bound?
A counter-part of the backtracking search algorithm which, in the absence of a cost criteria, the algorithm
traverses a spanning tree of the solution space using the breadth-first approach. That is, a queue is used, and
the nodes are processed in first-in-first-out order.

14. What is a state space tree?
The processing of backtracking is implemented by constructing a tree of choices being made. This is called
the state-space tree. Its root represents a initial state before the search for a solution begins. The nodes of the
first level in the tree represent the choices made for the first component of the solution, the nodes in the
second level represent the choices for the second component and so on.

15. What is a promising node in the state-space tree?
A node in a state-space tree is said to be promising if it corresponds to a partially constructed solution that
may still lead to a complete solution.

16. What is a non-promising node in the state-space tree?
A node in a state-space tree is said to be promising if it corresponds to a partially constructed solution that
may still lead to a complete solution; otherwise it is called non-promising.

17. What do leaves in the state space tree represent?
Leaves in the state-space tree represent either non-promising dead ends or complete solutions found by the
algorithm.

18. What is the manner in which the state-space tree for a backtracking algorithm is constructed?
In the majority of cases, a state-space tree for backtracking algorithm is constructed in the manner of depth-
first search. If the current node is promising, its child is generated by adding the first remaining legitimate
option for the next component of a solution, and the processing moves to this child.
If the current node turns out to be non-promising, the algorithm backtracks to the node’s parent to consider
the next possible solution to the problem, it either stops or backtracks to continue searching for other
possible solutions.

19. Draw the solution for the 4-queen problem.

Q

Q

Q

Q Q

20. Define the Hamiltonian circuit.
The Hamiltonian is defined as a cycle that passes through all the vertices of the graph exactly once. It is
named after the Irish mathematician Sir William Rowan Hamilton (1805-1865).1t is a sequence of n+1
adjacent vertices vi0, vil, , vin-1, vi0 where the first vertex of the sequence is same as the last one while
all the other n-1 vertices are distinct.

21. What are the tricks used to reduce the size of the state-space tree?
The various tricks are

e Exploit the symmetry often present in combinatorial problems. So some solutions can be obtained by
the reflection of others. This cuts the size of the tree by about half.

e Pre assign values to one or more components of a solution

e Rearranging the data of a given instance.

22. What are the additional features required in branch-and-bound when compared to
backtracking?

Compared to backtracking, branch-and-bound requires:

e A way to provide, for every node of a state space tree, a bound on the best value of the objective
function on any solution that can be obtained by adding further components to the partial solution
represented by the node.

e The value of the best solution seen so far

23. What is a feasible solution and what is an optimal solution?

In optimization problems, a feasible solution is a point in the problem’s search space that satisfies all the
problem’s constraints, while an optimal solution is a feasible solution with the best value of the objective
function.

24. When can a search path be terminated in a branch-and-bound algorithm?

A search path at the current node in a state-space tree of a branch and- bound algorithm can be terminated if

o The value of the node’s bound is not better than the value of the best solution seen so far

o The node represents no feasible solution because the constraints of the problem are already
violated.

o The subset of feasible solutions represented by the node consists of a single point in this case
compare the value of the objective function for this feasible solution with that of the best solution
seen so far and update the latter with the former if the new solution is better.

25. Compare backtracking and branch-and-bound.

Backtracking Branch-and-bound
State-space tree is constructed using | State-space tree is constructed using
depth-first search best-first search
Finds solutions for combinatorial non- | Finds solutions for combinatorial
optimization problems optimization problems
No bounds are associated with the | Bounds are associated with the each

26. What is the assignment problem?
Assigning ‘n’ people to ‘n’ jobs so that the total cost of the assignment is as small as possible. The instance
of the problem is specified as a n-by-n cost matrix C so that the problem can be stated as: select one element
in each row of the matrix so that no two selected items are in the same column and the sum is the smallest
possible.

27. What is best-first branch-and-bound?
It is sensible to consider a node with the best bound as the most promising, although this does not preclude
the possibility that an optimal solution will ultimately belong to a different branch of the state-space tree.
This strategy is called best-first branch-and-bound.

28. What is knapsack problem?
Given n items of known weights wi and values vi, i=1,2,...,n, and a knapsack of capacity W, find the most
valuable subset of the items that fit the knapsack. It is convenient to order the items of a given instance in
descending order by their value-to-weight ratios. Then the first item gives the best payoff per weight unit
and the last one gives the worst payoff per weight unit.

29. Give the formula used to find the upper bound for knapsack problem.
A simple way to find the upper bound ‘ub’ is to add ‘v’, the total value of the items already selected, the
product of the remaining capacity of the knapsack W-w and the best per unit payoff among the remaining
items, which is vi+1/wit1
ub = v + (W-w)(vit1/wit1)

30. What is the traveling salesman problem?
The problem can be modeled as a weighted graph, with the graph’s vertices representing the cities and the
edge weights specifying the distances. Then the problem can be stated as finding the shortest Hamiltonian
circuit of the graph, where the Hamiltonian is defined as a cycle that passes through all the vertices of the
graph exactly once.
31. List out the steps of Greedy algorithms for the Knapsack Problem
a) Compare the value to weight ratio
b) Sort the items in nonincreasing order of the ratios
¢) If the current item on the list fits into the knapsack place it in the knapsack; otherwise proceed to
the next.
32. Define Christofides Algorithm
Christofides Algorithm is an algorithm exploits a relationship with a minimum spanning tree but it in
a more sophisticated way than the twice around the tree algorithm. It has the performance ratio 1:5
33. List out the steps of Nearest-neighbor Algorithm
a. Choose an arbitrary city as the start
b. Repeat the following operations until all the cities have been visited: go to the unvisited city
nearest the one visited last
c. Return to the starting city.
34. What is meant by c-approximation Algorithm?
We can also says that a polynomial-time approximation algorithm is a c-approximation algorithm if

its performance ratio is at most c, that is, for any instance of the problem in question
F (sa) <c f(s*)

35. Define Performance ratio
The best upper bound of possible r(Ss)values taken over all instances of the problem is called the
performance ratio of the algorithm and denoted RA

36. List out the steps of Twice-around tree algorithm.

(A)Construct a minimum spanning tree the graph corresponding to a given instance of the
traveling salesman problem.

(B) Starting at an arbitrary vertex, perform a walk around the minimum spanning tree recording
the vertices passed by.

(C)Scan The List of Vertices Obtained in Step2 and Eliminate from it all repeated occurrences of
the same vertices except the starting one at the end of the list

37. Define Integer Linear Programming

It is a Programming to find the minimum value of a linear function of several integer-valued
variables subject to a finite set of constraints in the form of linear equalities and/or in equalities.

38. What is meant by nondeterministic algorithm?

A nondeterministic algorithm is a two stage procedure that takes as its input an instance I of a
decision problem.

Algorithm has the property that the result of every operation whose outcome are not uniquely defined.
The machine executing such operation is allowed to choose any one of these outcomes. To specify such
algorithms, introduce three new functions.

e Choice (s) — Choose any one of the element of the set s.

e Failure () — Signals an unsuccessful completion
e Success () — Signals a successful completion.
39. Define nondeterministic Polynomial
Class NP is the class of decision problems that can be solved by nondeterministic Polynomial
algorithms. This class of problems is called nondeterministic Polynomial.
40. Define NP-Complete
An NP-Complete problem is a problem in NP that is as difficult as any other problem in this class because
any other problem in NP can be reduced to it in Polynomial time.
41. Define Polynomial reducible
A Decision problem D1 is said to be polynomial reducible to a decision problem D2 if there exists a
function t that transforms instances of D2 such that
o T maps all yes instances of D1 to yes instances of D2 and all noninstances of D1 to no instance of
D2
o T is computable by a Polynomial-time algorithm
42. What is the difference between tractable and intractable?
Problems that can be solved in polynomial time are called tractable and the problems that cannot be
solved in Polynomial time are called intractable.
43. Define undecidable Problem
Some decision problem that cannot be solved at all by any algorithm is called undecidable algorithm.
44. Define Heuristic
Generally speaking, a heuristic is a "rule of thumb," or a good guide to follow when making decisions. In
computer science, a heuristic has a similar meaning, but refers specifically to algorithms.
45. What are the strengths of backtracking and branch-and-bound?
The strengths are as follows
e It is typically applied to difficult combinatorial problems for which no efficient algorithm for finding
exact solution possibly exist

e [t holds hope for solving some instances of nontrivial sizes in an acceptable amount of time
Even if it does not eliminate any elements of a problem’s state space and ends up generating all its elements,
it provides a specific technique for doing so, which can be of some value

16 marks

1. Explain the backtracking algorithm for the n-queens problem.
The problem is to place eight queens on a 8 x 8 chessboard so that no two queen “attack” that is, so that no

two of them are on the same row, column or on the diagonal.
o

Algorithm place(k,I)
{

forj:=1tok-1do
if(x[j]=1) or(abs(x[j]-I)=abs(j-k))) then return false;
return true;

j

Algorithm Nqueens(k,n)

{

forI:=1tondo

{

if(place(k,]) then

{

x[k]:==1;

if(k=n) then write(x[1:n]);
else

Nqueens(k+1,n) } } }

2. Explain Backtracking technique

Backtracking technique is a refinement of this approach. Backtracking is a surprisingly simple
approach and can be used even for solving the hardest Sudoku puzzle.

Problems that need to find an element in a domain that grows exponentially with the size of the
input, like the Hamiltonian circuit and the Knapsack problem, are not solvable in polynomial time. Such
problems can be solved by the exhaustive search technique, which requires identifying the correct
solution from many candidate solutions.

Pseudocode of Bocktracking Algorithm
Backtrack (B[1..7)
// Input: B[1..1] indicates the first i promising parts of a solution
[foutput: All the tuples which are the solution of the prohlem
If B[1..i] is a solutionwrite B[1..i]
else
for eachelemente €5 i +1 consistent with B[1..i] and the constraints do
B[1..i] <&
Backtrack (B[1..i+1])

Steps to achieve Goal:

e Backtracking possible by constructing the state-space tree, this is a tree of choices.

e The root of the state-space tree indicates the initial state, before the search for the solution
begins.
The nodes of each level of this tree signify the candidate solutions for the corresponding
component.
A node of this tree is considered to be promising if it represents a partially constructed
solution that can lead to a complete solution, else they are considered to be non-promising.
The leaves of the tree signify either the non-promising dead-ends or the complete solutions.
Depth-First-search method usually for constructing these state-space-trees.
If a node is promising, then a child-node is generated by adding the first legitimate choice of
the next component and the processing continues for the child node.

If a node is non-promising, then the algorithm backtracks to the parent node and considers the
next promising solution for that component.

If there are no more choices for that component, the algorithm backtracks one more level
higher. The algorithm stops when it finds a complete solution.

Example

[]

[]

This technique is illustrated by the following figure.
Here the algorithm goes from the start node to node 1 and then to node 2.

When no solution is found it backtracks to nodel and goes to the next possible solution node
3. But node 3 is also a dead-end.

—————,

Dead-and

Cead-eng

i- Dead end 1

Moda 3 \]/

" o

Jead-end

Hence the algorithm backtracks once again to node 1 and then to the start node. From here it
goes to node 4 and repeats the procedure till node 6 is identified as the solution.

Give solution to Hamiltonian circuit using Backtracking technique

[]

[]

The graph of the Hamiltonian circuit is shown below.
In the below Hamiltonian circuit, circuit starts at vertex i, which is the root of the state-space

From i, we can move to any of its adjoining vertices which are j, k, and 1. We first select j,
and then move to k, then 1, then to m and thereon to n. But this proves to be a dead-end.

So, we backtrack from n to m, then to 1, then to k which is the next alternative solution. But
moving from k to m also leads to a dead-end.

So, we backtrack from m to k, then to j. From there we move to the vertices n, m, k, I and
correctly return to i. Thus the circuit traversed is i-> j -> n-> m-> k-> [-> 1.

l:’ n :l
dead end dead end
5 |j. If:lr:'

dead end

S0l utian

State-Space Tree for Finding a Hamiltonian Circuit

4. Give solution to Subset sum problem using Backtracking technique

[]

In the Subset-Sum problem, we have to find a subset of a given set S = {s1,s2,.....,sn } of n
positive integers whose sum is equal to a positive integer t.

The root of the tree is the starting point and its left and right children represent the inclusion
and exclusion of 2.

Similarly, the left node of the first level represents the inclusion of 3 and the right node the
exclusion of 3.

Thus the path from the root to the node at the ith level shows the first i numbers that have
been included in the subsets that the node represents.

Thus, each node from level 1 records the sum of the numbers Ssum along the path upto that
particular node.

If Ssum equals t, then that node is the solution. If more solutions have to be found, then we
can backtrack to that node’s parent and repeat the process. The process is terminated for any
non-promising node that meets any of the following two conditions:

Ssum* Sie > T (the sum is too large)
il

Saumt ¥ 5i< t ({the sum is too small)

j=i

with § /
._h_f')
110} (5] : (2)
o, o _J \ 7/
solition 1 8 / " Witk ¥ solution | | ¥
545=10 TeE5M 248=10 B+ 810 3+ 810

\wjo$ with 5/ ."‘._'M'DS v.1th5_."; I-._'n‘f.'c-'}

7N 0+13>10
1 ¥y %

(g (3}
L ot

PR A
VIRV

X X
1310 5<1b

5. Explain P, NP and NP complete problems.
Definition: I
An algorithm solves a problem in polynomial time if its worst case time efficiency belongs to O (P (n)).
P (n) is a polynomial of the problem’s input size n.
Tractable:
Problems that can be solved in polynomial time are called tractable.
Intractable:
Problems that cannot be solved in polynomial time are called intractable. We cannot solve arbitrary
instances in reasonable amount of time.
Huge difference between running time. Sum and composition of 2 polynomial results in polynomial
.Development of extensive theory called computational complexity.
Definition: 11
P and NP Problems:

It is a class of decision problems that can be solved in polynomial time by deterministic algorithm, where
as deterministic algorithm is every operation uniquely defined.
Decision problems:

A problem with yes/no answers called decision problems.

Restriction of P to decision problems. Sensible to execute problems not solvable in polynomial time
because of their large output.
Eg: Subset of the given set

Many important problems that are decision problem can be reduced to a series of decision problems that
are easier to study.
Undecidable problem:

Some decision problems cannot be solved at all by any algorithm.
Halting Problem:

Given a computer program and an input to it, determine whether the program halt at input or continue

work indefinitely on it.
Proof:
Consider A is an Algorithm that solve halting problem.

A[P,I]= (1,if P halts on input I

0, P does not halt on input I

If two answers are true :> <:|

There are some problems that can be solved in polynomial time(i.e) no polynomial time algorithm.

Some are decision problems that can also be solved.
Eg:

Hamiltonian circuit problem
Travelling salesman problem
Knapsack problem
Partition problem
Bin Packing
Graph coloring
Definition: III (A non-deterministic algorithm)
Here two stage procedure:

Deterministic

(Verification Stage)

A Non-deterministic polynomial means, time efficiency of its verification stage is polynomial.
Definition: IV

Class NP is the class of decision problem that can be solved by non-deterministic polynomial algorithm.
This class of problems is called non-deterministic polynomial.

P € NP

P=NP imply many hundreds of difficult combinational decision problem can be solved by polynomial time.

NP-Complete:

Many well-known decision problems known to be NP-Complete where P=NP is more doubt.
Any problem can be reduced to polynomial time.
Definition: V
A decision problem D1 is ploynomially reducible to a decision problem D2. If there exists a function t,
t transforms instances D1 to D2
t map yes instances of D1 to yes instance of D2
t map no instances of D1 to no instances of D2.
DI reduced D2
D1 — D2
(Yes) (Yes)
D1 — D2
(No) (No)

NP problems

NP complete problem

Definition: VI

A decision problem D is said to be NP Complete if it belongs to class NP.Every problem in NP is
ploynomially reducible to p.

E.g.: CNF statisfiability problem

It deals with Boolean expressions. Boolean expression represented in conjunctive normal form.

Consider a expression needs 3 variables x1, x2 and x3 where ~x1, ~x2, ~x3 are negation.

x1V~x2V~x3) & (~x1Vx2) & (~x1V~x2V~x3)
P#NP,

Decision problem in NP-Complete:

A decision problem in NP- complete can be done in 2 ways.

I. A string is generated in polynomial time for Non-Polynomial problem. That string says
whether it is possible or not to solve the problem.

II. Every problem in NP is reducible to a problem in polynomial time

NP problem

\KerNP Complete problem

6. Explain Chromatic Number decision problem:
Graph coloring:
A coloring of a graph G=(V,E) is a function f:->{1,2.....k} defined V I € v-H{(u.v) € E, then f(u)#f(v).

The chromatic number decision problem is to determine whether G has a coloring for a given K.

Let G=(V,E) where v={v1,v2,....vn} and the colors be positive integers, the sequential coloring strategy(sc)
always colors the next vertex say vi with minimum acceptable color.

Algorithm:
Input:
G=(V, E) an undirected graph where v= {v1, v2...vn}
Output:
A coloring of G
Sequential coloring (V, E)

int c,i

for(i=1; i<=n;i++)
for(c=1; c<=n;c++)
if no vertex adjacent to ui has color ¢
color ui with ¢
break i //exit for(c)
//continue for(c)
//continue for(i)

E.g:

for(i=1;1<=5;i++)

for(c=1;c<=5;c++)

i=1, c=1 No vertex adjacent to v1 has color i

Color v1 with color 1

Break

v1 is adjacent to v2 having the same color 1
Continue for ¢
No vertex adjacent to v2 having the color 2
Color v2 with color 2

break

No vertex adjacent to v3 having the color 1
color v3 with color 1

break

v3 is adjacent to v4 having color 1
continue for ¢

No vertex adjacent to v3 having the color 2

Color v4 with color 2
Break

i=5,c=1 No vertex adjacent to v5 having color 1
color u5 with color 1

break

7. Explain the approximation Algorithm for NP-hard Problem:

Travelling salesmen problem and the knapsack problem are the difficult problems of combinational
optimization.

NP-hard problem:

As hard as NP complete. No known polynomial time algorithm for these problems.
Heuristic:

Rule drawn from experience not by maths.E.g: Greedy method
Accurate optimal solution:

While using an algorithm we may get a actual solution .check how accurate this solution or
approximate

Accuracy of approximate solution Sa:

Quantity the accuracy of an approximate solution Sa to a problem minimizing some function f by the
size of the relative error of this approximation

re(Sa)=f(Sa) — f(S*)
f(S*)

S* is a exact solution to the problem.

r(Sa)= f(Sa)/f(S*)

Accuracy ratio:

To measure accuracy of Sa.Accuracy ratio of approximation solutions to maximization problem is
computed as

r(Sa)=f(S*)/f(Sa)
Make this ratio r(Sa)>=1 for mini minimization problem.
Approximation Solution:
r(Sa)=Closer to 1
Performance ratio:

r(Sa) values taken over all instances of the problem called as performance ratio denoted by RA.for high
performance RA closed to 1.

C-Approximation algorithm:
Performance ratio RA=c
f (Sa) <=C f(S*)
re (Sa) =f (Sa)/f(S*) — f(S*)/f(S*)
=f (Sa)/f(S*) - 1
We can simply use the accuracy ratio

r (Sa) =f(Sa)/f(S*)

The accuracy ratio of approximate solutions to minimization problem.

r (sa) =f(Sa)/f(S*)
The accuracy ratio of approximation solutions to maximization problem is
r (Sa)=f(S*)/f(Sa)
r (Sa)=1 better approximation solution.
8. Explain the approximation algorithm for the travelling salesman problem (TSP):
» Nearest neighbour algorithm
» Twice —around the tree algorithm
Nearest Neighbour algorithm:
» Simply greedy method
» Based on the nearest neighbour heuristic

» Always go for nearest unvisited city

Algorithm:
Stepl: Choose the arbitrary city as the start
Step2: Repeat all cities (unvisited)
Step3: Return to the starting city

Stepl: ‘a’ starting vertex
Step2: The nearest neighbour of a is b
a->b
a->b->c
a->b->c->d
All the cities are visited.
a->b->c->d->a
Return to starting vertex
Length is 10:
S =a->b->c->d->a
Exhaustive search:

S*=a->b->d->c->a

Length is 8.

The optimal solution must be minimum.
Accuracy ratio:
r(Sa)=f(Sa)/f(S*)
=10/8
=1.25

Therefore Sa is 25% longer then the optimal tour S*.It force us to traverse a very long edge on the last leg of
the tour.

If we change the weight of edge (a, d) from 6 to an arbitrary large number w>=6.

The tour a-b-c-d-a if length 4+w.
a->b->c->d
1+2+1
r(Sa)=f(Sa)/f(S*)
=4+w/8 (6=>a-d long tour)
If choosing large value for w then RA=c0
It is difficult to solve the travelling salesman problem approximately.

However, there is a very important subset of instances called Euclidean, for which we can make a non-trivial
assertion about the accuracy of the algorithm.

» Triangle inequality:
d[L,j]<=d[1,k]+d[k,j] for any triple of cities
» Symmetry:
d [1,j]=d [j,1] for any pair of cities I and j
The accuracy ratio for gny such instance with n>=2 cities.
f (Sa)/f(S*)<=1/2 |[log2 n] +1
where f(Sa) and f(S*) are the length of the nearest neighbour and shortest tour respectively.
Twice —around the tree algorithm:
Twice around the tree algorithm is a approximation algorithm for the TSP with Euclidean distances.

Hamiltonian circuit & spanning tree.

v Polynomial time:

With in polynomial time twice around the tree can be solved by prims or kruskal’s algorithm.
a)length of the tour Sa
b) Optimal tour S*, i.e. Sa twice of S*
f (Sa)<=2 f(S*) (Hamiltonian circuit)

¢) Removing a edge from S* yields spanning tree T of weight w (T)

w (T)>w (T*)

f(S*)>w (T)/Tree >=w (T*)/Tree

2 f(S*)>2 w (T*)

d) The Length of the walk>=Length of the tour (Sa)
21(S*)>f (Sa)
Christofides algorithm:

One of the approximation algorithms with better performance ratio for Euclidean TSP is called
Christofides algorithm.

Euclidean circuit exits in a connected multigraph if and only if all the vertices have even
degrees.

» Multi graph: Doubling every edge
» Christofides algorithm:

Obtain multigraph by adding to graph, the minimum weight matching of all
the odd degree vertices in its MST (minimum spanning tree)

++ It has 4 odd vertices a, b, c, €

ab/4 ce/l11

% Traversal of the multi graph starting from ‘a’ produce Euclidian circuit a->b->c->e->d->b-
>a

*

s a->b->c->e->d->a length=37

Local Search heuristics:
¢ Best known algorithm
2-opt, 3-opt, Lin Kernighan (decades)
¢ 2 opt algorithm: Deleting a pair of non adjacent edges in a tour and reconnecting their
endpoints with different pair of edges. This operation called as 2-change.

9+6+8+7+12=43

X/

» Ignoring integrality constraints provides lower bound. It is called as Held karp bound,
length of short tour.

% It is close to optimal tour.
R (Sa) =f (Sa)/f(S*) can be replaced as
F (Sa)/HK(S*) where HK is Held karp.
9. Explain in detail about approximation algorithm for the Knapsack problem
Knapsack problem:

Given n items of known weights w1, w2....wn and values v1, v2...n and a knapsack of weight capacity
w,find the most valuable subset of times that fits in to the knapsack.

This problem can be solved by

v" Exhaustive search

v" Dynamic programming

v" Branch and Bound
Greedy algorithms for the knapsack problem:
I. If items selected in decreasing order(weight)
e Heavier Items may not have high value
e No guarantee for knapsack
II. Use Greedy strategy
Vi/wi, i=1, 2..n
Algorithm based on greedy Heuristic. It is for discrete knapsack problem.
Stepl: compute ri=vi/ wii=1...n
Step2: Sort items in decreasing order with ratio

Step3: Proceed till knapsack filled

Item weight

1 7

2 3

Capacity=10
Compute value to weight ratio

Sort items in decreasing order

Item weight value Value/weight

4 $40 10

$42

$25

4 $12

1&4 items are added. Does this always true? NO
Greedy algorithm for the continuous knapsack problem:

1. compute vi/wi, i=I,...n
2. sort items in decreasing order
3. Take large fraction till sack fills/no items left.

Approximation Schemes:
Approximation Sa (K),

F (Sa (k))/f(S*) <=1+1/k for any instances of size n.

Where k is integer parameter. Range 0<=k<n

Example: K=2

Value/weight

10

Solution = {1, 3, 4}
It is theoretical than practical
Approximating the optimal solution with any predefined accuracy level.
Time efficiency of this algorithm is polynomial in a.

Total no of subsets the algorithm generates before adding extra element is O (n)
time to determine the subsets possible. Thus algorithm efficiency is O

Subset Added item
0] 1,34

{1} 3,4

{2} 4

{3} 1,4

4 13

{1,2} Not feasible
{1,3} 4

{14} 3

{2,3} Not feasible

12,4}
3.4}

